Electron-vibron coupling in suspended carbon nanotube quantum dots
نویسندگان
چکیده
Motivated by recent experiments, we investigate the electron-vibron coupling in suspended carbon nanotube quantum dots, starting with the electron-phonon coupling of the underlying graphene layer. We show that the coupling strength depends sensitively on the type of vibron and is strongly sample dependent. The coupling strength becomes particularly strong when inhomogeneity-induced electronic quantum dots are located near regions where the vibronic mode is associated with large strain. Specifically, we find that the longitudinal stretching mode and the radial breathing mode are coupled via the strong deformation potential, while twist modes couple more weakly via a mechanism involving modulation of the electronic hopping amplitudes between carbon sites. A special case are bending modes: for symmetry reasons, their coupling is only quadratic in the vibron coordinate. Our results can explain recent experiments on suspended carbon nanotube quantum dots, which exhibit vibrational sidebands accompanied by the Franck-Condon blockade with strong electronvibron coupling.
منابع مشابه
Spectrum and Franck–Condon factors of interacting suspended single-wall carbon nanotubes
A low-energy theory of suspended carbon nanotube quantum dots in weak tunnelling coupling with metallic leads is presented. The focus is on the dependence of the spectrum and the Franck–Condon factors on the geometry of the junction including several vibronic modes. The relative size and the relative position of the dot and its associated vibrons strongly influence the electromechanical propert...
متن کاملTunneling in suspended carbon nanotubes assisted by longitudinal phonons.
Current-voltage characteristics of suspended single-wall carbon nanotube quantum dots show a series of steps equally spaced in voltage. The energy scale of this harmonic, low-energy excitation spectrum is consistent with that of the longitudinal low-k phonon mode (stretching mode) in the nanotube. Agreement is found with a Franck-Condon-based model in which the phonon-assisted tunneling process...
متن کاملHigh temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots
The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs). High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectro...
متن کاملElectrical probe for mechanical vibrations in suspended carbon nanotubes
The transport properties of a suspended carbon nanotube probed by means of a scanning tunnel microscope (STM) tip are investigated. A microscopic theory of the coupling between electrons and mechanical vibrations is developed. It predicts a position-dependent coupling constant, sizable only in the region where the vibron is located. This fact has profound consequences on the transport propertie...
متن کاملSwitchable Coupling of Vibrations to Two-Electron Carbon-Nanotube Quantum Dot States.
We report transport measurements on a quantum dot in a partly suspended carbon nanotube. Electrostatic tuning allows us to modify and even switch "on" and "off" the coupling to the quantized stretching vibration across several charge states. The magnetic-field dependence indicates that only the two-electron spin-triplet excited state couples to the mechanical motion, indicating mechanical coupl...
متن کامل